AFCRL-66-243
APRIL 1966

PHYSICAL. AND MATHEMATICAL SCIENCES RESEARCH PAPERS, NO. 215

1

n
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

AD634764

Catego'rizations and Realizations of
Positive Real and Biquadratic
Immittance Functions

KURT H. HAASE

(

CLEARINGHOUS
FOR FEDRRAL BCIEN H‘I" AnND
TECHNICAL INFOR ’»iz\ { IOI\
Beadoopy moroﬁicho

3 3.00 | $ ) 72 EX
| MMW@mW

OFFICE OF AEROSPACE RESEARCH
United States Air Force




AFCRL-46-242
APRIL 1955
PHYSICAL AND MATHEMATICAL SCIENCES RESEARCH PAPERS, NO. 215

DATA SCIENCES LABORATORY PROJECT 5628

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

Categorizations and Realizations of
Positive Real and Biquadratic
Immittar. ~e Functions

KURT H. HAASE

Distribution of this document 1s unlim:* +d

OFFICE OF AEROSPACE RESEARCH
United States Air Force




Abstract

It is shown that a positive real immittance function F(s) is of one of eight
categories. The category can be recognized by the sign polarities of three test
values that are functions of the coefficients of F(s). If F(s) is of a certain cate-
gory, then 1/F(s) can only be of some other categories. According to the cate-
gories of F(s) and 1/F(s) the immittance function can be realized (1) either by
an RC or an RL network with positive eiements, (2) by an RLC network with
exclusively positive elements and an equivaient model circuit, or (3) only by
model circuits. A model circuit is an RLC ladder structure with one negative
branch element. The RC, RL, RLC, and model circuits have several equivalences.
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Categorizations and Realizations of Positive Real
and Biquadratic Immittance Functions

1, INTRODUCTION

The problem of realizing electrical networks that have & prescribed positive
real and biquadratic function as driving-point impedance or admittance has been
and is still being widely discussed in the literature, The foremost reason for so
many papers on the same subject lies in the fact that the problem of realization
in general does not have a unique solution, Although the order of a biguadratic
function is a relatively low one, we will sce in this paper that there arc already
a great variety of circuit configurations which can rcalize such a function; there
arn still more circuits, but we will restrict ourselves to the realizations of the
canonical ladder type, We feel that non-canonical realizations and rcalizations
of the lattice and other configurations deserve a separate discussiorn that {8 in-
tended for a later publication,

Canonical realizations of the ladder type incorporate resistive (R), inductive
(L), and capacitive (C) circuit clements in a minimum number. The elements
arc not necessarily all positive, We will sce that there are¢ 48 ladder configura-
tions, cach of which realizes a positive real and biquadra‘ic driving-point func-
tfon, There are some groups of realizations that realize the same function; the
eircuits of such a group are referred to as cquivalent, Thosc ladder realizations

(Received for publication 7 December 1065)



that have exclusively positive elements are gencrally known, As a novel contribu-
tion this paper presents a simple test method by which one can quickly find out
whether or not such a ladder rcalization, with only positive elements, can be ob-
tained from a biquadratic function known by its coefficients, Ladder configurations
in which one clement is negative are also known as "Brune Circuits.” This paper
shows that these circuits have several equivalences which — at least to the author's
knowledge — are not yet known, The test method to be discussed also reveals
whether or not such a realization can be obtained for a given function, In order

to apply the test method, we first divide the positive resl and biquadratic functions
into eight categories. Fach category — as we will show — can be realized by certain
groups of equivalent circuits. Thus, when the test reveals the category to which a
certain function belongs, one can immediately indicate the qualitative circuit struc-
tures without the necessity of developing the entire circuit, This is certainly an
advantage in the realization problem,

Those circuite that incorporate one negative circuit element (there is only one
negative element on the biquadratic level) cannot be realized, of course, from the
get of only positive elements, It is, however, always possible to transform these
structures further into a non-canonical configuration with only positive elements,
These further transformations are reserved for a future publication. Thus the
paper will present only those canonical structures, which, since thcy are not
realizable by positive elements but are nevertheless fundamental for a further
transformation, are referred to as "model circuits. "

Finally, it is hoped that the present paper offers many idcas which later can
also be applicd to the problem of realizing driving-point functions of a bigher order
than the biquadratic one,

2. FUNDAMENTAL CONSIDERATIONS ON THE BIQUADRATIC IMMITTANCE FUNCTION

2.1 The Immittance Concept

Let a two-terminal network (also referred to as a "onc-port* ) be generated by
a sinusoidal electromotive source as shown in Figure 1, Asgsume that the "black
box" in the figure does not incorporate other than lincar and passive RLC clements,
The current J excited by the voltage E will then be sinusoidal also, The driving-
point beha ricr of the black box can be described sufficiently by the quotient between
E and J with no need to consider the circuit in the box, the elements involved,
their number, or their interconnections. The term " quotient” is mathematically
somewhat neutral as long as we do not clearly define what is in the numerator and
in the denominator, A very similar situation is true from the physical point of
view., When we presume that E and J are references to norm units, with only



Figure !, Voltage E and
Current I at the Terminals
of a One-port

the latter ones measured in volts and amperes so that E and J are normalized,
then the quotient i8 also normalized. Hendrick Bode (1945) introduced the word
"immittance" as the neutral physical interpretation of the neutral mathematical
term "quotient" between E and J. The term can either be interpreted as
impedance Z(8) = E/J or as admittance I'(s) = J/E. We will denote in this paper
the jmmittance as F(s). Although there is a great advantage in the use of the
term immittance, the concept has beenr used very rarely over the years, It is
not listed in many competent technical dictionaries and there are still, from the
author's observation, many engineers and technicians who have never heard of

it. We will base all our discussions of the nature of positive real biquadratic
driving-point functions on the immittance concept.

In general the positive real immittance function F(s) is a function of the
complex frequency variable

s = o+ jw. (1)

In Eq. (1), w = 2 vf,., where {,. i8 referred to a norm frequency fy, measured

in cps for instance, so that f. = {/fjy i~ a ratio with no physical dimension. , The
rcal component ¢ in Eq. (1) is also referred and can for many discussions be
considered as a "dummy component.”" With ¢ = 0 the variable s can converiently
be used to avoid the imaginary unit i.

2.2 Brunc’s Statements on the Positive Realness Applied to the Immittance Function

Otto Brune (1931) was the first one to state the necessary and sufficient condi-
tions to be imposed on an analytical function in order that this function represent
the driving-point impedance of a network that incorporates only linear and passive
(not necessarily positive) elements. Such a function Z(s) is in Brune's definition
positive real (pr). With Z(s) pr, I'(s) = 1/Z (s) is also pr. Thercfore Brunc's
statements can immediately be applied to the immittance function F(8). In this

concept they are:
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An immittance function F({s) is posit ve real if, and only if F(s) is real for
real s, and ii for real and non-negative s F(s) is also real and non-negative,
that is if

Re(s) 2 0~eRe F(s) Z 0. (2)

The condition of positive realness can algo be specified in the following way:
the function F(s) can have poles and zeros only in the left half of the complex
s-plane including the imaginary jw-axis. If all poles and zeros are located on the
imaginary jw-axis, then the poles have to alternate with zeros in their sequential
locations, they have to be simple {multiplicity 1), and they have to have positive
residues; at w = 0 there must be a pole or a zero and also at w =+ », Poles and
zeros can only appear 1S conjugate complex pairs if they are not located on the
real g-axis., When s is substituted by o + jw with o =0, then Re F (jw) Zo
forall + w,

2.3 The Positive Real Biquadratic Immittance Function

A raticnal function of the intermediate variable x is referred to as biquadratic
when a quadratic polynomial, say ax? + bx + c, is divided by another quadratic
polynomial dx¢ + ex + f. Thus the function

ax? + bx + ¢ _

- x% + bx/a + c/a (3)
dx? + ex + f d

x¢ + ex/d + f/d

.

is a biquadratic (rational) function. Evidently, when we are only interested in the

dependency on the variable x, then it is sufficient to consider only the function on

the right side of Eq. (3) without the factor a/d, which is only a positive and real

scale factor. This fraction we call a "normalized biquadratic rational function.®
In this paper we discuss the biquadratic immittance functio.

SZ+ NIS + No

F(s) = .
s + Dys + Dg

(4)

We use the notation F(s) further only when it has the ferm presented in Eq. (4).
This means that it is normalized and biquadratic. We presume that the coefficients
Ng. Ny (N standing for 'numerator'), and the coefficients Dy, D, (D standing for
‘denominator! )} are all positive and real and that none of them degenerates to ¢ or .

We also presume that F(s) is a positive real function. For this, positive and
real coefficients Ng, Ny, DO » D; are necessary, but these characteristics of the
coefficients are not sufficient to easure that F(s} is pr. Although the conditions for




posiiive realness of a biquadratic funclion are knowngs we would like io derive ihem
as follows:

We postulate that

Re F(jw) 2 Oforall +w, (5a)

or introducing

<
Q= W, (6)
. we postulate that
Re F(jw) Z Oforall+ Q. (5b)

Replacing s by jo we obtain:

{7

Since the denominator in the fraction of Eq. (7) is complex, we multiply numerator
and denominator by the factor Dy - w? - jwD; and we obtain

F(jw) = ReF{ju) + Im F(jw), (8)
where

w?+ Ww¥(ND; - Ng - Dg) + NgDy

Re F(jw) = - (8a)
ot (.)Z(Dl2 - 2Dg) + DGZ
and
. Ny (w? - Dy} - Dy (0@ - Ny)
Im F (jo) = j(w 1T "0 (8b)
w + w (Dl —ZDO)+ Do
Replacing w? by © according to Eq. (6) we get
o + QN,D, - N, - D) + N,D
Re F(jo) = 171 "% " Y 00 (52)

‘ Q% + Q(D,2 - 2Dy) + Dy?




and

Im F(ju) = -j
2 + QD2 - 2Dy) + Dy?

(9b)

We are interested only in the result cobtained in Eq. (%9a).

By its derivation from a square the denominator in Eq. (9a) is certainly posi-
tive for all positive 2. Thus we have only to be sure that the numerator in this
equation is positive for all positive 2. The product NgDg is positive by the defi-
nition of the coefficients of F (s) as positive. Thus only the factor (NjD; - Ng - Dg)
can disturb the positiveness of the numerator. We do not have to worry when this
factor is positive. But when it is negative, then the numerator is positive only
when ¢he quadratic equation

& + Q(N{Dy - Ng - Dg) + NgDg = 0, (10)

has a pair of conjugate complex solutions. It is a well known fact in the field of
algebra that in this event the left side of Eq. (10) is positive ior all real Q. Equa-
tion (10) has the discriminant

Ag = (N1D; - Ng - Dg)® - 4NgDg . (11)

The discriminant has to be non-positive, It evidently can also be written in the
form

- .1
Aq [NIDI-NO-DO +2 NODOJ [NIDI-NO-DO - 2./NgDg ]

[Nln1 - («/Ng - /Dy)? ] [NlDl - (WNg + «/DO)Z] (12)

It can easily be observed in Eq. (12} that A can be negative only if the expression
in the first pair of brackets ir the second line is positive and the one in the second
pair is negative. If the expression in the first pair of brackets is negative, the one
in the second pair is also negative; and if the expression in the second pair is posi-
tive, the one in the first pair is also positive. Hence positive realness of the bi-
quadratic function F (s) postulates that

ND; 2 (UNg - VDp)t. (13)




The postulation (13) with its sign of inequality also holds when the numerator in _—
Eq. (92) equals (Q + Q3) (2 + Q) with Q3 and @y, positive.

Any biquadratic function for which Eq. (13) holds is positive real. There are
two sub-sets of pr biquadratic functionis: for the one the sign >, for the other the
sign = holds. From now on we will use the notation F(s) predominantly for func-
tions of the first sub-set. When we are sure that the sign of equality in Eq. (13)
holds, we will always use the notation

Fe) = SoF Nys + Ng , (19)
52+ Dys + Dy

for which
N'IT)I = (»Jﬁo - \/50)2 = ﬁoz + 602 -2 ﬁoﬁo. (14a)

We refer to the function F (s) in Eq. (14) as a singular pr biquadratic immittance

function. When interpreted as an impedance function it is generally known in the
literature as *a minimum resistance function.® A singular function can easily be
recognized zs such by the bar notation attributed to the capital letters.

A function

2
S +le+N0

F(s) = 1
sZ+Dls+D0’ (13)
for which in generzl
NiD; > (VN - ~/Dg)? (152)

is referred to as a non-singular pr biquadratic immittance function from now on.

The real component of a singular function F(s) according to Eq. (9a) is

- Q2 - 20/ NgDy + NgD
Re Fju) = — 00 00 (16)
Q2 + (D, - 2Dy) + Dy?

The numerator in Eq. (16} equals zero when § = '\/ﬁoﬁo .

=
=
R4




3. CHARACTERISTICS OF THE PR RIDUADRATIC CiNCTIONS

- X

3.1 A Categorization of pr Biquadratic Functions

Many relations between the magnitudes of the real coefficients Ng, N3, Dy, D)
are feasible when we postulate by the equality (14a) or by the inequality (15a) that a
function F (s) or a function F{s) should be positive real. One can predict that we
will be able to distinguish between certain categories such that functions that are
of the same category will show roughly the same dependency on the frequency var-
iable, We categorized the pr immittance functions ¥ (s) according to similarities
of Re F (jw) in Eq. (%a). First we separated functions F(s) with Ny > Dy from
functions with Ng < Dg. This separation is a divisisn of the class of biquadratic .
pr functions F (s) into two main-categories:

main-category (a) is defined by Ng > Dy, {17a)
main-category (b) is defined by Ng < Dg. {17b)

We found that when we plot Re F(jw) vs § in the range 0 S 9 S ® we can distin-
guish between four sub-categories in each main-category. We thus come up with
a total of eight categories (al), (a2}, (a3), (a4) and (bl), (b2), (b3), (b4). We
show the real components of the sub-categories of main-category (a) in Figure 2

and the real components of the sub-categories of main-category {b) in Figure 3.
The figures should be taken as rough sketches only.

Since

Re F(j0) = F{0) = Ng/Dg, (18)
and

ReF(j®) = F(»w) = 1, (19)

the curves that we sketched in both figures start with the ordinate Ng/Dg at = 0
and end with the ordinate 1 at € = ». In both main-categories the curves in sub-
category (1) show no inflections and remain within the ordinates Ng/Dg and 1 be-
tween the fregquency limits 0 and . The smallest magnitude of Re ¥ (jw) in cat-
egory (al) is 1 and in category (bl) it is N5/Dy. Ir both main-categories the
curves show one inflection which is a maximum N, at Qp, in sub-category (3). N
Again the smallest magnitude of Re F(jw) is 1 in category (a3) and Ny/D, in
category (b3). In both main-categories the curves show two inflections in sub-
category (2), the one is a maximum Np, at £y, the other a minimum Np, at Qp,.

Thus the smallesi magnitude of Re F {jw) is Ny, in categories {a2) and (b2).
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Figure 2. Sketches of Re F(jw) vs Q = w? for Ng/Dg > i

Finally in both main-categories the curves show one inflection in sub-categories (4)
which is a mirimum Np, at Qp,. Thus also in categories (a4) and (b4) the smallest
magnitude of Re F (jw) is Ny .

We also observe that in the range 0 < © <  the ordinate Ng/Dg is crossed
once at Q, in the categories (a2), (a3), (b2), {b=); the ordinate 1 is crossed once
at Q; in the categories (a2), (a4), (b2), {b3). There are no crossings Q3 and Q;
in sub-categories (1), and there is no crossing 2, in category {a4) and no crossing
Q3 in category (b4).

There are now two techniques by which we can find out to which category a
certain function beleongs: either we differentiate and identify the differential quo-
tient with 0,

dReF(iw) = dQ _ 4

df do {20)

or we search for the ordinate crossings £, and € by solving the equations

"
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Re F(jw) = Ng/Dg {21a)
and
Re F (ju) =

1, (22a)

Quadratic Eq. (20) yieids the solutions Qm and szm which, according to well
known rules of algebra, have to be identified as the minimum and/for maximum
frequencies. Equations {212) and {21b), however, are linear and have the solutions

Do {NQ’DO) - Dl (N0D1°N1Do)
NO - DG

Q, = (2ib)

and




1l

- Dg (Ng-Dg)
{(Ng-Dg) - D1 (N1-Dy) °

Q1 {22b)

When there is a crossing of the ordinates Ng/Dg and/or 1 in the range 0 < Q < o
the solution in Egqs. {21b) and/or (22L) must be positive. Since our aim at the mo-
ment is to find a “test method" by which we can identify the category of F{s), the
test has to be simple and for this reason we decided to choose the second way.

First a2ccording to the definitions of the main-categories in (17a,b) we intro-
duce the test value

Tg = Ng - Dg. (23)
If Ty is positive, we have main-category ‘a); if it is negative. we have main-

category (b). Substituting T in Eqs. (21b) and (22b) we obtain two other test *
values

and ’
T; = Tg-D1 (N3 -D1) . (2z)

Since Q, =T, /Tg and Q1 = DgTg/T1, the test values Ta and T} simply by their
sign polarity identify the respective sub-category of the function F(s). This is
shown in Table 1.

Table 1. Sign Polarities of @ ~ Test Values Tg, T, and Tj in
the Eight Categories

Test tegory
Vaive ! (21) (a2} (a3) (a2) | 1) (b2) (b3) {b4)
f |
T =+ + + + - - - -
a i - < - + - + -
i - -
T, | - + - + + +
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Each sign combination appears only once in any columnof Table 1, and since we
have 3 test values, each of them either + or -, there are 23 = 8 variations pos-
sible corresponding to eight categories.

In Table 1 and in further discussions in the text we prefer to use the notation
+ for > 0 and - for < 0. The value 0 can always be countedas + oras -.
For insiance if Ng = Dg and thus Tg = 0, the function can be considered 2s be-
ing of main-category (a) or of main-caiegory (b).

3.2 Misimum N and Minimua Frequency §2_ in Sab-Categories (2) and (£)

By Eq. (206) and using the test values Tg, Ta, Ty defined in Eqs. (23), {(24).

and (25) we obtair the frequency Q,, at which the minimum Ny, in the sketches

in Figures 2 and 3 appears as

Qn = (Tg + c2) Dp/T1, (26)
with
¢z = ¥Ty? - TaT1/Dg . (262)

when F(s) is of sub-category (2), that is, if it is of category (aZ) or (b2).

If F(s) is of sub-category (4), whai is, if it is of either category (a4) or (b4),

then,
S’m = (Tg + C‘;)DO,T], 29
with
> . -
e, = VT2 + |TaTy| My. (272)

The constants ¢, and c in Egs. (26a) ar. . {272) are pesitive. Test values
Tg and T} are both positive in Eq. {26) if F{s) is of categery (22) and both nega-
tive if it is of category (b2). In Eq. (27) T; is always positive, but Tg is positive
if F(s) is of category {a4) and negative if it is of category (o).

The wivimum frequency $, obtained in Egs. (26) or (27) must always be
positive,

The minimum Ny, is obtained by substituting Qm into Eq. {%).
Thus




,on s o

Q% + NgDg) + ., (N;D; - Ng - D)
m {Q m?' + DOZ) + pm (Dlz - ZDO)

(28j

3.3 Some Otker Characteristics of the Biguadratic Functions

We are now atle to recognize the category to which a function F(s), known by
the numerals in its coefiicients, beiongs. Tuhere are some characteristics that
are of further inlerest. Assume, for instance, that we keep the coefficients Ny
and Dy consiani and we ask: what are the ranges for the magnitudes of the coeffi-
cients N; and D so that the function remains within its original categery?

In the denominator of F(s) let us replace

D; = 2rVDy 29}

with r as a positive and real constant. It is always possible to refer D in this
way 10 Dy. Then by Eq. (22)

T,/Dg = N1Dy - {4r’Ng - Tp). (30)
and by Eq. (25)
T

= (.2 3 :
1 = (D% + Ty - NyDy. (31)

When we postulate that T, is positive, then

2
4r“Ng - T
0 < -
0 = 1 < 20, (-’23-)

and when we postulate that T, is negative, then

g -11'21\’0 - TO

0< N 2t
1 D; (32b)
When we postulate that Ty is positive, then
< 4r2py + T
0< Ny = 9 L (32a)

D,

and when we postuiate that Ty is negative, then
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2
4r°Dp + T,
—-———Q-———Q-SN1<co.

Dl = {33b)
Note that for
rf = 0.5 (34a)
2y _ 2 : - oA s
4r 30 - TO = 4r Do + To = 1\0 + Do. {34bh)

In sub-categories (1) and (2} T, and T; are of the same sign polarities, both
positive or negative. It can easily be shown that in main-category (a) where T
is positive the results of the pair of Eqs. (32a) and {33a) are contradictory when
r? > 0.5, and in main -category (b) where Tg is negative the results of the pair
of these equations are contradictory when r¢ < 0.5. Similarly the results of
the pair of Egs. (32b) and (33b) are contradictory in main-category (a) when
r? < 0.5 and in main-category (b) when r2 > 0.5. Hence

2

in categories (al) and (bl) cnly r“ = 0.5 is acceptable, {35a)
in categories {a2) and (b2) only r? £ 0.5 is accepiable. {35b)
For the other categories any magnitude of ré is acceptable. (35¢)

With D; referred tc Dy by Eq. (29) we show the ranges of Nj in Table 2. It
is interesting to observe that the discriminant 4Dy (r2-1) of the denominator of
F (s) is not importiant in our categorization; thus we do not pay attention to whether
r? is greater or smaller than 1. We rather observe whether r2 is greater or
smaller than 0.5.

For iater discussions we are also interested in the sign polarities of the ex-
pressions (NgD; - N1Dg) and (Nj - D;) which are implied, for instance, in the
formulas for the test values T; and Tj. Assuming a fixed pair of coefficients
Ng and Dy we show the sign pelarities of {Ngi»;-N3Dg) in Figure 4a for main-
category (a) and in Figure 4b for main-category (b). The sign polarities of (Nj-D;)
are shown in Figure 5a for mzin-category {a) and in Figure 5b for main-category (b).
In these figures we have plotted the coefficient Nj vs the factor r%. Cross shading
indicates that the difference under investigation is positive, horizontal shading in-
dicates that the difference is negative,
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We find that
(NgD1-N{Dg) is positive only in categories (al) and (a4), and
is negative only in categories (bl) and (b3). .
(N; - D)) is positive only in categories (al) and (23), and
is negative only in categories (bl) and (b4).
In all other categories the differences can be positive or negative. Different sign .
areas are separated by the dashed lines corresponding to (NgD;-N1Dg) = 0 and
(N1-Dj) = 0 respectively.

3.5 The Category of the Inverse Fuaction F' (s} = 1/F (s)

Assume we have identified the category of a particular function F (s) by the
sign polarities of the test values Tg, T,, and T} as defined in Egs. {23), (24), .
and (25). It is trivial of course to identify the inverse fuaction

s2+ Njs + Ny s+ Dys+ Dy

F' (s) = 1/F(s) = (35)

st + D'ls-i- Db s? + Nis + No

in absolutely the same way. Table 1 can also be applied to the sign polarities of

Tg = Ng - Dg,

H 1 1 1 t ] J ]
Ta = DgTg - D1(NgDy - N1Dg) ,
Ty = Tg - D] (N} - DY) .

But instead of determining the categories of the inverse functions individually, we
would rather like to know: is there a unique relation between the category of F(s)
and that of F (s) 2 Can we say: when F(s) is of this category then F'(s) is of
that one? As a matter of fact, the answer to this question is not trivial.

It is trivial that Eq. (35) reveals

No = Do, {36a)
N} = Dy, (36b)
D = Np. (36c)
D} = N;. (36d)
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It is also trivial that

To = - Tg > (37)
that is, if ¥ (s) is of main-category {(a}, then F'(s) is of main-category (b), and
vice versa. It is also trivial that

{NgD} - N3jDg) = - (NgD; - N;Dg) , (38)
and that

(N} - D)) = - (N} - Dy). (39)
Since, however, by these last two relations

Ta = Nj(NeD) - N3Dg) - NqTy, (40) ‘
and

Ty = N3 (N; - D) - Ty, (41)
the relations between T, and Ta and between Tj and T'l are far less obvious.

By Eqgs. (24) and (40) we can reilate

Ta = '[NlTa + (NgD; - NlDo)To]lDl . (42a)
or

T, = —[D]T'a + (NgDjy -NlDo)To]lNl. (42b)
and

T, = -[TaNo + (NgDy ~N1D0)2]/Do, (42c} .
or

T, = -[TiDg + @Dy - N1Dg) g . (424)

3.
A

t bW,
G, Mo
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A . {25) and {41} we can relaie
§ T'l = -[NlT] - (Ny - DI)TO]/DI' (43a)
or
Ty = -[DyT) - @4 - DT |y, (43b)
e
x
1 T} = (v - DP? - T1, (43c)
§
+.
4
= or
¥
;,Z
Ty = (Ny - D1)2 - T}. (43d)

It follows from Eq. (42c} that T; is certainly negative if T, is positive. It

also follows from Eq. (43c) that T'l is pesitive if T3 is negative. By Table 1 we
recognize that we can make

Statement 1;

If F(s) is of category (a3), then F'(s) is of category (b4), and if F(s) is of
category (b3), then F'(s) is of category (a4).

We are able to show that if F(s) is of category (al), then F'(s) cannot be of
either category (b2) or (b3). According to Table 1, T, is positive and T; negative
in this case. Figure 5a shows that (N; -D,) is positive. Hence, by Eq. (43a) the
test value T'l of F'(s) is positive. This, however, contradicts the information
given by Table 1 that in categories (b2) and (b3) the test value T'l has to be negative.

On the other hand, if F(s) is of category (al), then F'(s) can be either of

category (bl) or (b4j. In these categories T} is negative according to Table 1 as
gory g 1 ga

well as according to what we found in the preceding paragraph. The test value T;

is positive when F'{s) is of categery (bl}. When F (s} is of category (al) then the
test value T, is negative. In this category, according to Figure 4a and by Table 1,
(NgD;-N;Dg) and T are both positive. Hence, by Eq. (42b), Ta' is positive as it
should be. If F'(s) is of category (b4) and F(s) of category (al), then T, has to
; be negative. Since Figure 4b allows both polarities for (NgD,-NDg) in category (b4),
T, negative can be obtained according to Eq. (42b). Thus we can make
Statement 2:

If F(s) is of category (21), then F'(s) can be either of category (bl) or (b4).
If F (s) is of categery (bl), then F'(s) can be either of category (21) or (a4).

[ T TP .

‘\‘I

The second part of Statement 2 can be proved in a way similar to the proof of
the first part.
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We are able 1o show that if F(s) is of category {2z), then F'(s) caunot be of
either category (bl or (b3). In this case T; is positive. Then, according to
Eq. (42d), T,
gory (a2). This is a contrad.ction.

On the other hand, if F(;) ic of category (22), then F'(s) can be either of
category (b2) or (b4). For both categories 'I‘;_ must be negative according to
Table i. Figure 4b allows both polarities for the difference (NgDj-N1Dg) in
categories (b2) and (b4). According to Eq. {42b), T, can be positive as it should
be. Figure 5b allows both polarities also for {N;-Dy). In category (a2) T, is

positive. According to Eq. (43a) T'l can be negative and according to Eq. {43b)

is negative. But Table 1 postulates that T, is positive in cate-

T3 can be positive. We can make
Stztement 3:

If F(s) is of category (a2), then F'(s) can be either of category (b2) or (b4).
If F(s) is of category (b2), then F'(s) can be either of category (a2} or (a4).

Again the second part of Statement 3 can be proved similariy tc the proof of
the first part.

We can show that if F(s) is of category (a4), then F'(s) can be of category (b4)
and vice versa. According tc Figure 4a the difference (NgDj-N;Dg} is positive for
F(s) of category {24). When we eliminate this difference in Egs. (42a) or (42b), we
find that it has the opposite polarity of T, and T:.: which are both negative for cate-
gories (24) and (b2). We get the same resuit by Egs. (42c} or (42d). In categories
(a4) and (b4) T; and T} are both positive. Hence Tj + T} is positive. This is
verified by Eqgs. (43c) and {43d). Thus if F(s) is of category (a4), then F'(s) can
be of category (b4) and vice versa. Statements 1, 2, and 3 prove, however, that
if F(s) is of category (a4). then F'(s) can aiso be of one of the categories (bl),
(b2), or (b3); and when F(s) is of category (b4) then F' (s) can be of any of the
categories {al}, (a2), or (a3). Hence we can make
Statement 4:

When F(s) is of category {a4), then F'(s) can be of any of the four sub-categories
in main-category {b}. When F(s) is of category (t4), then F'(s) can be of any of the
four sub-categories of main-category (2).

We summarize the four statements in Tables 3a and 3bG.
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Takle 3a. Caiegories of F'{s) for Certain
Categories of F({s)

T H
If F{s) is then F'{s) = 1 /F {s) is of
of category either one of the categories
{al) {(bl), {b4)
(a2) (b2}, (b4)
\a3) {b4)
(a4) {bl), (b2), {b3), (b9)

Table 3b. Categories of F (s) for Certain
Categories of F (s)

!
KF(s)is then F'(s) = 1 /F(s) is of
of category either one of the categories
(bl) 1), (a4)
{o2) (a2), {=9)
(b3) (a9)
{bs) (al)  22), (23), (a9

4. THE DECOMPOSITION OF POSITIVE REAL IMMITTANCE FUNCTIONS

1.1 Temminology and Purpose of a Decomposition

When we present a pr immittance {unction as a sum suck that each member
of the sum is again a pr immittance function, then we refer to the sumas a
decomposition. A sum of pr immittance functions is always a pr function; but

conversely, the decomposition of a pr function does neot necessarily have mem-
bers which are all pr. Thus, in decomposing a pr function, we always have to
make sure that the members cf the decomposition are all pr.

The purpose of decomposing a pr immittapce function is to obtzin a sum in
which the members are in some way simpler than in the un-decomposed function.
In this paper we decompose the biguadratic functions first into two members; the
first ore is a positive constant. A constant can be considered as a degenerated
pr immittance function of the mos? primitive form. It is pr since it is defined
as positive. Thus, the first member in the decomposition certainly is simpler
than the biquadratic function since it does not depend on the variabie s. The

second member is a pr irequency function in the following decompositions.
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4.2 The Decomposition of the Biquadratic lamittance Function F{s)

Let us return for a moment to the sketches in Figures 2 and 3. Obviously, in
all these presentations of Re F (i) we are able to shift the abscissa axis upward
and in parallel up to a certain limit, without hurting the postulaticn that Re F (jw) 2o
for all positive . This limit in categories (al) and (a3) is 1, in categories (bl) and
(b3) it is Ng/Dg, and in categories (a2), (a4), (t2), (b4) it is Ny,,. Thus
if F(s) is of category {al) or (a3)

F(s) = 1 + Fax(s), (42a)

if F(s) is of category {bl) or (b3)

F(s) = NOIDO + Fpi (s}, (44b)

if F(s) is of category (a2), (a4), (b2), or (b4}

F(s) = Np, + (1 - N ) F(s). (44c)

When in parts (a) and (c} in Figure 2 we shift the abscissa up to 1 on the ordi-
nate, then the real component becomes zero at € = . Hence according to Eq. {44z)

Re F, 3 (i) = 0 for Q= w.
But since
F{g =1,
then
Fai(ed = 0 and Im Fyy (je) = 0 also.
Hence Fgj (s) is nc longer a biquadratic function.
When in parts {a) and (c) in Figure 3 we shift the abscissa up to the ordinate
Ng/Dg . then the real component becomes zero at = 0. Hence according to

Eq. (44b)

Re Fip(») = 0 for @ = 0.

But since
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F(0} = No/Dg,
then

Fp (0) = 0 and Im Fp (j0) = 0, also.

Hence Fy) (s) is also nc longer a biquadratic function.

When in parts (b) and (d) in Figures z and 3 we shift the abscissa up to the
ordinate Np,, then the real component becomes a double zero at Q,,. Since
neither F(0) nor F(w) degenerates to 0 or @, they will both be finite. Thus
the component (1 - Nyp) F (s) in Eq. (44c) wil? still be a biquadratic function.
But, as we saw at the end of Section 1. 3, F(s) will be singular,

It is the aim of the next three sections to investigate the functional compo-
nents F,p (s}, Fyis), and (1 - N, )F(s) in more detail.

4.2.1 THE FUNCTIONAL COMPONENT Fyk{s) IN A DECOMPOSITION OF
A FUNCTIOR F(s) OF CATEGORIES (al) OR (a3)

By Eq. (44a) we obtain

s + (Ng-Dg)/(N1-Dy)

F_i {s) = (N;-Dy)
ak 17 s2+ Dys+ Dg

(45)

Evidently F,i {s) is no longer biquadratic. Let us make sure that it is pr. A
necessary condition for this is that all of iis coefficients must be positive.

The coefficients Dy and D; are positive by their definitions. The difference
Ny-Dy, is positive since F(s) is of the main category (a). The difference Nj-Dj
is positive in categories (al) and (a3) according to Figure 5a. Thus the numerator
coefficient (NO-DO) {(N;-Dy) in Eq. {45) and also the factor (N;-D;) in front of the
fraction are positive. It is easy to find that

DoTo - QT]
QZ'§' Q(Dlz - ZDo) + D02 * (46)

Re F, (s) =

The denominator in Eq. (46} is the same as in Eq. (%), hence it is positive for all
positive 2. Table 1 shows that in categories (al) and (a3) the test value Tj that
appears in the numerator of Eq. (46) is negative, Hence the numerator in Eq. (46)
is alsc positive for ail positive §2, and thus the component F. ) (s) is pr.

Consulting Table 2 we find that for categories (al) and (2 3) the square constant r
is allowed to be greater than 0.5. Thus it may also be greater than 1, in which
event the discriminant of the denominator
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Ap = D32 - 4Dg = (r2-1V 4D, {47)

becomes positive. Then introducing

ag2 = NDy {r - JrZy, (48a)

aj2 = JDg (r + Jr2-1), (48b)

b2 = Tg/(N;-D}), (48¢)
we have

Fzk(s) = (N;-Dj) s+ by

. {48)
(s + 2g2) {s + 219)

Note that this situation is a possible, but not a necessary one. It may also happen
that between the positive constants ag2, aj2, and bj2 the condition

aOZ < blz < al?- {484d)

holds. But note that this additional condition (484d) is not a necessity always coex-
istent with a positive discriminant Ap and with Egs. (48a,b, c). But if all Egs.
(48a, ..., d) hold, then F,) (s) as represented in Eq. {(48) is a function with two
poles -agZ and -232 located on the real g-axis with a zero -b)2 between them.
Thus, with poies and zeros aiternating in their location on the g-axis, Fgi (<} in
this case is a particular pr functicn. It is one of the class of pr impedance and/or
admittance functions that can be realized by either an RC or an RL network. These
functions have been discussed in an earlier scientific paper of the author [ Haase
(1963a)]. Since in the present one we shall very often refer to this other pap®er,
its respective tables have been reprinted and included as Tables A-1, ..., A-11
in the appendix.

The function in Eq. {48), for which ail Egs. (48a, ..., d) must hold, is a func-
tion of the type

2
Q4'l - s+ by

{see Table A-2 in the appendix),
k(s + ag2) (s + 219) ppendix)

for which

k = 1/(N1-D1). (483)
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If Eq. (48d) does not hold for the

function Fyi{s) as ii is presented in Eq. (48),
or if ré <1, so that Eq. (48) does not exist, then we propose to decompesce the in-

verse funcilon 1/k3k(s) as fo'lows:

s2 + Dys + Dg
(N1-D1) s + To /N1 -D1]]

I/Fak (S)

2
Kys + kp ST (49)
s + b]z

n

By the second right side of Eq. (49)

2 . 2y 2
LVFails) = ki St (ol MTs+ koayT/kg

s+ by

Comparing the coefficients in the numerator and the denominator and the factor in
front of the fraction with the first right side in Eq. (49) we obtain:

ky = 1/(Nj-Djy). (49a)
Dy (N{-Dy) - T T
Ky = 21 01-Dy) - Tg L (49b)
(N1-D1)2 (N1-D1)
D, (N;-Dy)
2 o (Ni-Dy
23" = e, (49c¢)
1 _T1
be? = o (a9d)
17 N-Dy

The function Fui {s) is presently supposed fo be of category (al) or (a3). Thus
Tg, -T;. and N}-D; are all positive. Hence all right side n Eqgs. (49, ..., d)
are positive. Both components in the second right side of Eq. (49) are pr functions.
The first componeiit kys is of the ype

Q1 = k1s (see Table A-3in the appendix),

where ki is given in Eq. (49a}.
Provided that

a12 > bj%, or aj? - by is positive, (49e)
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the second component is a function of the type

s-i'al2

Py = kp (see Table A-2 in the appendix).

S'i'bl

We proved that the second component is pr, But we now must prove that it is
of the type P3 with its zero alz left of its pole blz on the negative g-axis. This
hus to be the case when the discriminant Ap given in Eq. (47) is negative, and/or
when the discriminant Ap is positive, bvt the zero b32 is not located between the
zeros agé and a;? in the same form as in Eq. (48).

First let us assume that Ap is negative, that is that ré defined in Eq. (29) is

smaller than 1. Then the difference a;2-b;2 that has to be positive is, by
Egs. (49c, d),

Dy (Ny-Dy)< + ToT
2.h.2 - 20\WN1-Y) ol
a1°-by -Tp (N -Dp ¢ (50a)

The denominator in Eq. (50a) is positive since -T; and N;-D; are both positive
in categories (ai) and (a3). The numerator of (a12~b12)/D0 is

(Nl 'Dl)z - (Nl -DI)TODI /DO + TOZ/DO . (50b)
The quadratic polynomial in N;-D;, presented in (50b), has the discriminant

A = Ty*D12/Dy% - 4T¢2/Dg = %= Ap - (50¢)

Thus, if Ap is negative, A is also negative and the difference alz-bl2 is positive.

Secondly let us assume that Ap is positive, but Eq. (48d) does not hold; the
zero bl2 in Eq. (48) is not located between the poles a.O2 and alz. This is only
possible when

b12 < 232 and by2 < 352, (504)

since Dy = agZ + a;2 and Dy-bj2 has to be positive. But then the pole bj? in the
function of type P3 is right of the zero alz in this function and our assumption that
the second componant is of the type P3 is true also in the secund event.

There is another fact that we want to point out: Suppose the decomposition
Eq. {(44a) with Fyk (s) of the type Q4-! is possible. Then all Eqs. (48a, ..., d)
nold. By Egs. {(48a,b, ¢) we obtain




D, = ay%,2, (51a)

D; = a02+ alz, (51b)

Tg = (N;-Dy)b2. (51c}
By Eq. (25)

Ty = (N;-Dy) blz - {a02 + alz) , and is negative by (48d).
By Eq. (43c)
T} ’i'A(Nl-Dl)Z - T}, and is positive when T, is negative.

]
Hence T'l and (-Ty) are positive.
Note that

NgD; - N|Dy = TgD; - {N;-D)Dy = (N;-D,) (by2D; - D). (51d)

in Eq. (51d) the difference N;-D; is positive. The second factor in this equation
by Egs. (51a,b)

bIZDl—Do = alz(blz - aOZ) + aozblz

can only be positive when condition (48d) holds. Hence according to Figure 4a the
function F(s) must be of category (al) with T3 negative. According to Table 3a
the inverse function F' (s) = 1/F(s) can be of category (bl) or (b4). Note that for
this function

NoD} - NIDg = - (NgD: ~ N1Dg).

1t follows by Figure 4b that only when F'(s) is of category (bl), NyD} - N}Dp is ex-
clusively negative, and NgD; - NyDg is exclusively positive. Therefore we can
state:

If the function F (s) is of category (al) and the inverse function F'(s) = 1/F (s}

is of category (bl), then the functional component Fyi(s) in the decompesition

Eq. (442a) is of the type Q4'1 . If F(s) is of category (al) and F'(s) of category (b4),
or if F(s) is of category (a3) and F'(s) necessarily is of category (b4), then the
functional component Fyy (s) in Eq. (44a) is of the type 1/(Q + P3).
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A FUNCTION F(s) OF CATEGORIES (bl} OR (b3)
By Eq. (44b} we obtain

»

-Tg s S* (NoD1 - N1Dg) /Ty )

Fpk(s) =
Do s+ Dys + Dy

(52)

First we recognize that Fyy (s) is no longer biquadratic. Let us find out
whether it is pr. Since F(s) is of the main-category (b), the test value Tp is
negative. Thus the factor in front of the fraction on the right side of Eq. (52) is
positive. Consulting Figure 4b we find that in categories (bl) and (b3) the differ-
ence NgD;-NjDg is negative. Thus, with Tg negative, the coefficient in the nu-
merator of the fraction is positive. The function Fpk(s) satisfies the postulation
that all of its coefficients and the factor (-Tg) /Dy are positive. We compute

Ta - QTO

Q
Re Fpy (jw) = — -
eFoklia) = o - T amE - 2Dg) + Dg2

(53)

We know that ihe dencminator in Eq. (53) is positive for all positive Q. According
to Table 1 the test value T, is positive in the considered categories (bl) and (b3).
Hence, with the negative T the numerator in Eq. (53) is also positive for ail posi-
tive , and consequently Fp) (s) is pr.

According to Table 2 the square r¢ can be greater than 1 in both categories (bl)
and (b3). Thus, if r2 > 1, the denominator of Fpx(s) can be factorized as in
Eq. (48) and with

ag2 = ¥Dy (r - Jr2-1), (54a)
a;2 = ¥Dy (r+ V12D, {54b)
b2 = (NgDj - N;Dg) /Ty, (54c)
Frls) = =8 g s+ by (54)

Dy (s + a2 (s + a,2) :

Note that aoz and alz are the same in Egs. (48a,b) and (54a, b}; but b2 in Eq. (54c)
is different from b2 in Eq. (48c).
It 1s possible, but not necessary that

ag2 < b2 < aj2. (54d)

i“@"v N
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Then, with all Eqs. (54a, ..., d) true, the function in Eq. {54} i5 o i

P -1 - S(S+ blz)
gl =
k(s + ag2) (s + a2)

(see Table A-3 in the appendix),

for which

k = Do /("Ts) .

(54e)
2z
er
: 1f r2 > 1, but Eq. (54d) does not hold, or if r¢ < 1, then let us, for merely
formal reasons, name the former bj2 now a1, thus defining
. alz = (NODI - Nlpo)/'ro. (553)
and let us propose the decomposition
; H _ Dg(Dg + sD; + s2)
Fpk () s(-Tg) (@12 + s)
: . _Dg DQ, +g S3 blf (55)
‘ S("To) a=~ s+ ap~
i
% where
12 = Dy - Dg/a;2. (55b)
) Then
2
1 - 1 + s + by (56)
Fbk(S) kls kz(s + 612)
where
k; = - (NgD; - NyDg)/Dg2, (55¢)
and

kp = (-Tg)/Dg -

(55d)
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Note that bjZ in Eq. (54c) equals a)< in Eq. (55a), but b2 in Eq. (55b) is of
course different from blz in Eq. (54c).
The first component in Eq. (56) is a function of the type

Q;-! = 1/kys  (see Table A-2 in the appendix).
The second component in Eq. (56) is supposed to be a function of the type
P31 = (s+ b2 /ky(s + a;2)  (see Table A-3 in the appendix).
We have to prove that the second functional component in Eq. (56) is a function

of the type P3-1 where a;2 > b2 or iy2-b;2 is positive. For this purpose let us

compute
a;2-0,2 = (NOD,-N?DO)/TG - D; + DgTy/(NgD;-NDg),
hence
Tg (NgD;-N;Dg) (a12-b3?%) = (NgD;-NDg)? - {NgD;-N3Dg) Dy Tg + DgT? -

The left side of ihis equation is positive when (a;2-bj2) is positive, since in cate-
gories (bl) and (b3} the test value T, and the diiference NyD;-N D are both rieg-
ative. Thus we have to prove that the right side of this equation is positive.

The right side is 2 quadratic polynomial in NgD;-N(Dg. Its discriminant is

A = DyTy2 - 4DgTgZ = Tg2(Dy - 4Dg) = Ty Ap .,

with Ap defined in Eq. (47). Thus A has the same polarity as Ap. If ré < 1
then A and Ap are negative and then the right side is certainly positive, This is
true in particular when F (s} is of category (b3) where ré < 0.5.

Now assume that r¢ > | and that then in Eq. (54) the zers b;2 is not between
the poles aj2 and a;2; but remember that for Egs. (55), (53a, ..., d), and (56)
we redefined b2 as a;2. With ag2, 272, and by2 defined in Egs. (54a,b, c),
T, = Tg(Dy - by 25;) and has to be positive with negative Ty in categories (bl)
and (b3). Thus

le)Z - DO = (aoz + alz)blz - aozalz

has tc be positive, This is ensured when bl?' is not between aOZ and alz if

b12 > alz. Thus, when the poles and zeros in Eq. (54) do not aiternate, the zero
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bgz hag to ha located 1oft 45 the pole axz‘ and ihen our assumption that the second
component in Eq, (56) is of the type P;'l is correct.

Similarly, as in the discussion of the function Fyj (s} we can also find that a
function Fyi(s) of the type P4"1 can only be obtained when F (s) is of category (bl)
and F'(s) = 1/F (s) is of category (ai). Otherwise 1/Fyk (s) is of the type presented
in Eq. (56). Thus we state:

If the function F(s) is of category (al) and the inverse function F'(s) = 1/F (s)
is of category (al), then the functional component Fpy{s} in: the decomposition
Eq. (44b) is of the type P 4‘1. If F(s) is of category (bl) and F'(s) of category (a4},
or if F(s) is of category (b3) and F'(s) necessarily is cf category {a4), then the
functional component Fpy (s) in Eq. (44p) is of the type 1/(Q~! + P3")).

4.2.3 THE FUNCTIONAL COMPONENT (1-Np,)F(s) IN A DECOMPOSITION
OF A FUNCTION F'(s) OF CATEGORIES (a2), (a4), (b2), OR (b4)

By Eq. (44c) we obtain

F(s) = (F(s) - Np) /(1 - Np) = 2+ -’fl“_ﬁ_o . (57
s2 + Dls + DO

where since F(s) is a singular function
I_V'l—ﬁl = (’Jﬁa - ’\Irﬁ(‘-\)z . {57a)
The constant Nz < 1 is obtained by Eq. (28) where depending on the category of

F (s) the frequency 2, is obtained by Eq. (26) for categories (a2) and (b2) and by
Eq. {(27) for categories {24) and {b4). In Eq. (57)

Dy = Dy, (57b)
D, =D, (57c)
Ng = (Ng - NyyDg) (1-Np) , {57d)
N, = (N, -N_ D)/Q-N_). (57e)

It is necessary to compute N, with high accuracy; if the accuracy is not sufficient,
& considerable error in Eq. (57a} will occur even though the computation does not
involve any other error. As the tool for the computations we used a FRIDEN desk
calculator Model SRQ 10. In dealing with biguadratic functions it is sufficient to
get the results to 6-figure accuracy tc the right of the decimal point. Equation (57a)

has been more than sufficiently satisfied by increasing the accuracy to 9 figures to
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racy is not sufficient, then Np, can be corrected in the following way:
According to Eq. (57a) the constant Np, must satisfy the quadratic equation

2 -
AN %+ AN+ Ay =0, (58)
in which
A, = D;2(D;% - 4Dy), (58a)
A, = -2(D;%-2Dg) (NyD;-Ng-Dg) - 2Dg (Ng+Dg), (58b)
Ag = (N;D|-Ny-Dg)? - 4NgDg . {58¢c)

. Arn approximation of Ny, is known by the insufficiency. Thi¢ approximation can be
improved by instructions given in (Haase, 1863b).

There is an alternative which at first glance may seem to be very trivial: we
can also write Eq. (44c) as

F(s) = Ny, + (T_W , (59)
when we define

(1 -Np)' = 1/ - Np), (59a)
and

F'(s) = 1/F(s). (5¢b)
Then by Eq. {59)

Fle) 1-Nyp,  s2+Njs+ N 0

(F(s) -N_)) s+ Djs+ D’

where also F'ls) is a singular function so that

Dy = (VKp - VDp)2. (602}
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The coeificients in Eq. (60} are

Dy = (Ng - NyyDg)/(1-N), (60b)
Dy = () - N, DPDAI-N,), (690c)
Ny = Dg. (600
Ny} = D;. {69¢)

The difference between the decompositions Eq. (44c) and Eq. (59) is mentioned in

the next section when w2 interpret the immittances. By Eq. (44c) for instance

Impedance F(s)

and by Eq. {59)

Impedance F {s)

Simiiarly by Eq. (44c)

Admittance F({s)

and by Eq. (39)

Admittance F(s)

Impedance Ny, + Impedance {1-Np)) F(s),

1
Admittance (1-Ng,) 'F’ (s)

Impedance N, +

Admittance Ny, + Admittance (1-Np ) F (s),

Admittance N, + 1 .
Impedance (1-N) 'F' (s)

We have shown in Tables 3a,b that a non-singular function that is of the cate-

gory (a4) or (b4) allows inverse functions F’(s) that can be of any of the four sub-

categories in the other main-category. This does not hold for singular fun<tions

F{s) and F'{s). These functions can only be either of sub-categery (2) or (4).

Thus for singular functicns Tables 4a, b are true:
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Table 4a. Categories of F'(s) for*Certain
Categories of F (s)

If F(s) is then F'(s) = 1/F (s) is of
of category either one of the categories
(22) {b2) or (b4)
(24) {b2) or (b4}

Table 4b. Categories of F (s) for Certain

Categories of F (s)

I F (s) is then F'{(s) = 1/F (s) is of
of category either one of the categories
(b2) {a2) or (a9
{b4d) (a2) or {a4)

1t also follows from Tables 4a, b that a singular function F{s) cannot be of an odd
sub-category (1) or {3).

When the function F(s) is of an even {(odd) sub-category and the function F'(s)
is of an odd {even) sub-category, the decompositior of F {s) is clearly distinct
from that of F'(s). The one has the functional component Fak(s) or Fpi(s), the
other the component (1-Np,) F(s). But when F(s) and F'(s} are both of even sub-
categories, then both functions have the functional component (1-Np,) F(s) in their
decomposition. In order tc avcid too many notations, we will agree that in this
event we decompose F(s) as it is, and by the decomposition we will obtain one set
of Np, (1-Kp), (1-N_))', F(s), and F'(s). Then we decompose F(s) with D's
interchanged with N's and get a second set of decomposition constants and
functicnals.

Consider now the singular function F(s) in the notation of Eq. (57). Sucha

function can be written in the iollowing form:

Fis) = xxn-1)%s(s)2(s) + van®els) gls) + xznd(s) g(s)
=7 = vo(s) + xn®(s) + zn¢(s) .

(61)
In Eq. 61) v and n are real constants of the same sign polarity (when vis
positive n is also positive, and when v is negative n is also negative); x and z

are real and always positive constants. The notations &(s}, ®(s), and {(s) are

normalized positive real-frequency functions such that one of them is s, another
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one 1/s, and the third one 1. There are gix possible variations for the disiribuiion
of these particular frequency functions over é{s), ®(s), and ¢{s} as we show in
Table 5:

Table 5. The Six Possible Distributions ¢f s, 1/s, and 1
over &(s), &(s), and r(s)

R OO M, w4

Function :
Notation Selections
’I-‘;l &(s) = 1/s, ¢(s) = 1,
&(s) = s,
Fax 2(s) = 1, g(s) = 1/s,
Fp &(s) = s, tis) = 1,
¢(S) = 1/51
.F—‘bx Q(S) = l: ‘:(S) = s,
F. 2(s) = s, r(s) = 1/s,
é(s) = 1,
Fex ®{s) = 1/s, ¥(s) = s.

The functions -F-‘a and Fax have the selection 6(s) = s in common; the selections
of the functions 1/s and 1 are interchanged. The situations are simiiar in the
iunction pairs isb. i'—:hs: and I—?c, ?cx- We want that

Fp = Fypy = Fe = F = Fos). (62)

Fp, = Fax c

Substituting the selections according to Table 5 we obtain:

— 2 Y
2 s+ sx{n-1)“/z2n° + xX/vn 63)

F, = zn =
a s+ szn/v + xn/v '

where
zn® = 1. (63a)
— 2 . 2 2. . 2
Fay = x(n-1)% S— & szn"/x{n-2¥"+ =n/vin-1)T | (64}

s? + sxnlv + zniv

oS Sy o - T e nm e




where
xn-% = 1,
.F-'b - 2 SZ.,.st(n-l)Z/zn-l- vn/x )
s+ sz/x+ v/xn
where
z =1,
?bx - x = stn[x + v(n-l)?‘[zn
s+ sx/z + v/zn
where
x = 1.

F. o= vin-1)2  s%+ sznfv(n-1)2 + znfx (n-1)2 .
¢ n s+ svhn+ z/x
where
2
vin-1 = 1.
n
F = s2+ sx/vn+ x{n-1)?/zn? )
&= s+ svizn+ x/z '
where
w o= 1.

Equations (63a, ..., 68a) follow from the fact that F(s) = 1 for s—e.

39

{64a)

(55)

(652)

(66)

{66a)

(67)

{673)

{58a)

Since all the function variations are the same according to Eq. (62) we can

make comparisons between the coefficients Ng, Dg. N3, Dj and the respective

expressions in Egs. (63, ..., 68) and we thus obtain the results in Tatle 6.
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Table 6 also contains the constants

u = vin - 1) {69)

and

- ———

w = v(ﬁ - l). (70)

These constants will be of interest later. But note that

-

1/u + 1/v + 1/w = C, (71)

which _zkes it necessary that one of the u, v, w be negative, whereas the other two
are positive in the sign polarity. Thus, when v and n are negative, then u and w
must both be positive. But when v and n are positive, then either u or w must
be negative. The sign polarities depend only on the main-category of F(s) which
is the same as the main-category of F(s).

Table 6 also shows that although when we want to obtain the coustants n, u,v,w,
x, z of all six variations, only half of them have to be computed. The constant u
is the same for F, and F‘ax: for Fp, and f‘bx» and for -P_‘c and ch- The ccn-
stents v and w interchange between these pairs, also the corstants x and z. As
is indicated by the * .ners of the triangles B and Q the respective constants n

are vice versa and inverse. But note also that

i

‘ n in Fy = 1/u in Fg, (72a)
I n in Fp = u in F, (72b)
f n in F, =-uv/win F,. (72¢c)
]

!

| Also:

’i n in Fyy =-w/u in Fg, {733)
; n in F‘bx = w in ﬁc' (73b)
! n in l:'cx = 1/w in I_"c. (73c)

! Thus when the constants u and w in F. are known, the constant n can be easily
computed for alt variations o° F (s).

! Table 6 also holds, of course, for the inverse function F'(s) when the coeffi-
cients Dy, D;. Ny, N; are replaced by the coefficients ﬁb, ﬁ'l . ﬁb, ﬁ'l as de-
; fined in Eqs. (60b, ..., ).

|
;
|
?
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For convenience we give in Table 7 references fo the rec
be used when decomposirg the function F (s).

Table 7. Decomposition Table

F (s) of Category (al) or (a3)

Decomposition F(s) = 1 + Fy (s)

*(s) of (al)
F'(s) of (bl)

F(s) of (al) or (a3)
F'(s) of (b4) (b4)

Fa (s) of type Qq-1
see Egs. (48} and (48a, ..., e)

Fax (s) of type 1/(Q1+ Pi)
see Eqgs. (49) and (49a, ..., d)

¥ (s) of Category (bl) or (b3)
Decompesition F(s) = Ny/Dg + Fy,) (s)

F (s} of (ul)
F'(s) of (al)

F (s) of (bl) (b3)
F'(s) of (a4) °F (a4)

Fp (s) of type P4~!
see Egs. (54) and (54a, ..., e)

Fpk(s) of type 1/(Q1-1 + P3~1)
see Egs. (55) and (55a, ..., d)

F {s) of Category (a2), (b2), (a4), (b4)
Decomposition F(s) = Ny + (1-Np) F(s) = Ny + (1-Np) /F'(s)

F (s) and F(s) of
{a2) or (b2)

F (s) and F(s) of
{a4) or (b4)

F(s) and F(s) of
(22), (b2), (a4), (b4)

F'(s) of
{(a2), (b2, (a4), (b4)

Get Npy, by Egs. (26) and (26a)
Gei Np, by Eus. 127) and {27a)

Get coefficients 1—)0 . T)l , 1—\10 , I—\’l of F (s)
by Eqs. (57b, ..., e)

&l

Get variations Fa ) eaer
directly by Table 6

Get coefficients I_)b . —D'l . ﬁb , ﬁ'l of Fi(s)
by Egs. (60b, ..., e)

Get variations f‘; , eaes -I?‘cx
by Table 6 with all capitals primed.
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5. REALIZATIONS OF DRIVING-POINT IMMITTANCE FUNCTIONS F (s)

By "realizing" an immittance function we understand that we are looking for a
network structure such that the driving-point immittance measured at its terminals
(see Figure 1) is F(s). If we propose F (s), we will always obtain two classes of
networks: one class has the driving-point impedance identica: with F {s), the other
has the driving-point admittance identical with F{s). Each class usually has zev-
eral equivalent networks. But each network in the one class has a dual network in
the other. When the networks are of the ladder type, then the dual network is found
simply by drawing the graphic representation of one network; then by drawing the
dual graph representation (each series branch becomes a shunt branck and vice
versa). Both graphs are topologically related. Then the element combinations in
the first graph have to be replaced by the dual element combinations fer each topo-
logically related branch; this means that if each branch implies oniy one element,
for instance, a resistance, an inductance, a capacitance in the first graph become
a ccnductance, a capacitance, an inductance in the se¢cond graph.

Practically, however, the situaticn is usually such that we are confronted with
the problem of realizing a network that has a prescribed impedance function Z (s)
or a network that has a prescribed admittance function I'(s), where Z(s) and re-
spectively T'(s) are pr bigquadratic-functions. Thus Z(s) or T'(s) is prcposed
and not F(s). Hence we can adjust F (s) to the proposed function. I Z(s) is pro-
posed we make Z (s) = F(s); but then necessarily I'(s) = F'(s) and these two iden-
tities yield two classes of networks which of course are not dual; but each network
in the one class may have some structural similarities with a network in the other
class. Similarly, when I’ (s) is proposed, we make I'(s) = F (s} and then
Z (s) = F'(s).

3.1 The Impedance and the Admittance Interpretation of F (s)

As a neutral concept the immittance function ¥ (s) can be deliberately inter-
preted as an impedance Z {s) or ac an admittance I'(s}, or the immittance func-
tion F(s) can be deliberately adjusted to an impedance Z(s) or zn admittance I'{2).
It makes no difference whether we stick to the {first or to the second formulation.

In the third section we have decomposed F (s) ir (wo or mcre coiaponents and we
determined that these components are pr and of lower rank (Fyis) and Fpy(s)

and the constants 1 and Ng/Dg respectively}, or we have determired {hat the

functional component implied a singular function whereas the nc :mposed T (s)
was non_singular. Of course, when F(s) is interpreied in ene .y or the other,

the interpretation also holds for the components. Say, we interpret F(s)

Z {z)

as an impedance, and assume that we decomrosed

o
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F{s} = Fi(s) + F;is), (12)
where Fj(s) and F,{s) are pr. Then
impedance F(s) = impedance ¥)(s) + impedance F)(s). (74a)

But with

1/Fy(s) = Fj(s) and 1/F,(s) = F'Z(s)

we can write Eq. (74a) also in the forms

3 P -~ 1 = 1 L
impedance F (s) admittance Fj (s) * Zdmittz 1ce F5(s) ’ (74b)
= impedance Fj(s) + 1 . {74c)

admiitance FZZ {s)

1 X _
= 1 + imped F .
admittance Fj (s) impedance F (s) (744d)

When a component Fj(s) is of the type P;i, Qi. Pi‘l . Or Qi‘i as listed in the
apperdix, then impedance Fj(s} equals exactly 1/admittance FS (s) since

P; = 1/P;-1 and Q; = 1/Q;~1. (Note that a co:.stant can be censidered as 2 func-
tion of the type Py, Table A -2 or as a function of the type Pl'i , Table A-3.)
Hence there is also no difference in the circuits realizing impedance F;(s) or

1 /admittance Fj{s}). But if Fj(s) = (1-N)F (s}, then a circuit realizing the
impedance Fj(s) is different from a circuit realizing 1/admittance F.'! (s} ac we

wili see in Section 5.2, 3,

3.2 KLC Cir-uits Kealizing F (s) in Both Interpretations

Since we know the decompnsition of F(s) as compiled in Table 7, we know
also iis realization as soon as the realizations of the decomposition components
arc krown. The decomposiiions are sums. In the impedance interpretation the
component circuats have to be linked in series, in the admittance interpretation
they have to be linked in parullel. As far as the componenis are of the types Py, Qj

or their reciprocals, their realizations are communicated in Haase (19632) with the

respective tables reprinted in the appendix. Realizations of F {s) will be given in
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5.2.1 REALIZATIONS OF IMMITTANCE FUNCTIONS F(s) OF THE CATE-
GORIES (al) AND (a3)

An immittance function F(s) that is of caiegories (al) or (a3) has the decom-
position of Eq. (44a). The first component 1 in the decomposition is a resistance
Ry = 1 in both interpretations of F({s). Block realizations for the impedance inter-
pretation of F (s, are snown in Table 8a; for the admittance interpretation they are
shown in Table 8h. If F, (s) is of the type Q4-1, then an impedance O4-1 is in
series with Rg = 1 in the impedance interpretation {see upper part of Table 8a)
and an admittance Q-1 is in parallel with Ry = 1 in the admittance interpretation
(see upper part of Table 8b). As it is shown in the lower part of Tables 8a,b, if
Fak (s) is of the type 1/{Q+P3), ther an admittance (Q,+P:) is in series with Ry
in the impedance interpretation, and an impedance {Q3;+P3) is in parallel with Ry
in the admittance interpretation. The tables show only part of the realization possi-
bilities, since we are also able 1o realize 1/F (s). But for these realizations we do
not have as yet sufficient information since 1/F(s) is of category {bl) or (b4). We

also want to postpone gcing into the detail of the box structure.

5.2.2 REALIZATIONS OF IMMITTANCE FUNCTIONS F (s) OF THE CATE-
GORIES (b1) AND (b3)

An immittance functioa F (s} that is of categeries (bl) or (b3) has the decompo-
sition Eq. (44b). The first component Np/Dg in tne decomposition is a resistance
Ry = Ng/Dg in the impedance interpretation 2ad a resistance Ry = Dg/Ng in the
admittance interpretation. In the latter interpretation we cculd also call it a con-
ductance Gg = Ng/Dg; this would be more systematical, bur we prefer ‘o use only
the term "resistance.” Block realizations for the impedance interpretation of F (s)
are shown in Table 9a, for the admittance interpretation in T'able 9b. ¥ Fy; {s) is
of the type P4‘1 , then an impedance P4‘1 is in series with Ry = Ny /Do in the
impedance interpretation of F{s) (see upper part of Table 92}, and ar admittance
P4”1 is in parallel with Ry = Dg/Ng in the admitiance interpretation of F(s)

(see upper part of Table 9b). As shown in the lower parts of Tables 9a,b, if

Fpp (s) is of the type 1/(Q;-1+ P3-1), n the impedance interpretation an admit-
tance 1 /(Ql‘1 + P 3'1) is in series with Ry, and in the admittance interpretation
an impedance 1/(Q;~1+ P3~1) is in parallel with Ry in the admittance interpreta-
tion. Also these tables do not exhaust all of the possibilities of realizing F(s),
since we can 2lso realize 1/F(s). This, however, togeiher with the information

about the circuit structures in the boxes, we will postpone.
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5.2.3 REALIZATIONS OF IMMITTANCE FUNCTIONS F (s} OF THE CATE-
GORIES (a?), (b2), {a4), OR (b4)

An immittance function that is of any of the categories (a2), {b2}, (a4), or (b4}
has the decomposition Eq. (44c). The first component N, < 1 in the decomposition
is a resistan. e Ry = N, in the impedance interpretation and a resistance Ry = 1/N,
in the admittan-~e interpretation. Again we prefer to avoid the conductance term
Gg = Ny, in the latter interpretation. Block rezlizations for the impedance inter-
pretation of F(s) are shown in Table 10z and for the admittance interpretation of
F (s) in Table 10b.

For the impedance interpretation in Table 10a we find one struciure where a
hox one-port with the driving-point impedance (1-Np,) F (s) is in series with the
resistance Ry = N, and another cne where the box one-port has the driving-point
admittance {1-N,} 'F'(s). For the admittance interpretation in Table 10b we also
find two arrangements: in orne a box one-pert that has the driving-point admittance
(1-Np) F{s) is in parallel with the resistance Rg = 1/N;, in the other a box one-
port, with the driving-point impedance (1-Xp,) 'F' {s). is in parallel with this resist-
ance. Let us forget for 2 moment the numerical factors (1-Np,) and {1 -Nm)' and
let us ask: is there a circuit structure that has Z(s) = F(s) as driving-poini im-
pedance, or another structure that has T (s) = F(s) as driving-point admittance?
The function F(s) in these irterpretations is a normalized and singular biquadratic
function. We can restrict ourselves tc the function F (s), since F' (s} is nothing
more than a formality in the notation.

In fact, there is such a structure. In the impedance interpretation of F(s) it
makes use of "a perfectly coupled and shuni-augmented T" that has been discussed
in an earlier paper of the author (Haase, 1265). In the admittance interpretation of
F (s) "a perfectly coupled and shunt-augmented Pi® has to be usz4 instead, since
the zdmittance interpretation is the dual of the irmnedance interpretation. At this
point let us discuss the realizations of F({s) in a structure where we represent the
branch immittances by toxes.

Consider ithe one-port shown in Figure 6a. It consists ofa T that is terminated
by the branch Z. The T has the series branches U and W and a shunt branch that
is composed of the branch elements V and X. The branches 1, V, W make a cou-
pled unit, thus we may say that X is an augmentation in the shunt branch of the T.

Let ail capiial notations in Figure 6z be impedances. Let {urther

1/Uu + 1;V + 1/W = 0. {75)
Then the driving-point impedance of the terminzted T in Figure 6a is

Z(s) = XU + W) + Z(U + V) + XZ (36

(V+ W)+ X+ 2) °
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x.z | ore impedonces

Figure 6a. The
Terminated Per-
fectly Coupled and
Shunt-Augmented T

Let
U = ué(s) = vin-1) é(s) , {77a)
V = vé(s), (77b)
W = wo(s) = v(% - 1)¢(s), (77c)
X = x®(s), (774d)
Z = z(s), (77e)
then
Z(s) = F(s) (78)

where F (s) is as in Eq. (61). With Eq, (76) of course Eq. (71) is also true.
Consider next Figure é6b. It consists of a Pi that is terminated by the branch Z.
The Pi has the shunt branches U and W and a series branch that is composed of the
branch elements V and X. The branches U, V,W make a coupled unit; thus we may
say that X is an augmentation in the series braach of the Pi. Let all capiial ncta-
tions in Figure 6b be admittances. Let Eq. {75} be true. Then the driving-point

admittance of the terminated Pi in Figure 6b is

= _ X+ W+ ZU+ V) + XZ
I"(S) = (V + \V) + (X + Z) . (79)

O P e 7
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Figure 6b, The
Terminated Per-

. fectly Coupied and
Series-Augmented Pi

Let the U,V,W, X, Z which are now admittances be determined as in Eqgs. (77a,
..., €), then

1{s) = Fls), (30)

where F(s) is as in Eq. (61). The right side of Eq. (79) is the same as the right
side in Eq. (76) since the structures in Figure 6a and Figure 6éb are vice versa dual.

By Eq. (75) one branch element of the U, V,W is necessarily negative. We will
sec later that in dealing with biquadi. - functions each branch element contains
oniy one R, L, or C circuit element. But quite generally, no mctter how the
branches are composed, the negative branch contains RLC elements that are all
negative. Thus the circuits represented in Figure 6a and Figure 6b cannot be re-
alized from th2 set of positive R, L, C elements. We refer tc them for this reason
as model circuits. They can be realized as such by using negative circuit elements
as far as necessary. They also can be expanded (as already mentioned in the In‘ro-
duction) to circuits with exclusively positive elements, however this has to - paid
by additional clements. The model circuits are cancnical, the expanded circuits
are not canonical. Reszlizations by using negative circuit elements and the expan-
sions, however, are considered to be beyond the scope of the present paper.

5.3 RLC Ladders with Exclusively Positive Circuit Elements for the Realizations of lmmittance
Functioas F(s)
All immittance functions of the types P;, Q;, P;~1, and Q;~! are realizable
in canonical form as RC structures in one interpretation of the function and as
RL structures in the other interpretation. More precisely, P; and Qk‘l {k = or #i)
. are RC (or RL) structures and P;~! and Q) are RL (or RC) structures in the same
interpretation of the function. In the other interpretation of the function, P; and
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Qk‘l are RL (or RC) structures and Pi'l and Q, are RC {or RL) structurcs,
Therefore realizations of the types Q4'1 and P4'l appear when F (s) and F'(s)
are both of the sub-categories (1). The realization is either (depending on the in-
terpretation of F(s)) RC or RL structures. But when the decomposition implies
the function (Q + P3) or the function (Ql‘1 + P3'1), then the realization can only
be a RLC network.

Realizations of the functions of the types P;, Q. Pi'l ., and Qi‘l are listed
in Tables A-4, ..., A-11 in the appendix.

Table A-4 is provided for i = 1,

Table A-5 is provided for i = 2. We do not use this table® :re. This one and
Table A-1 have been taken into the appendix more for the reason of a systematical
completeness.

Tables A-6 and A-7 are provided for i = 3. In this case each realization for
Table A-6 has a correspondent equivalent realization for Table A-7.

Tables A-8, ..., A-11 are provided for i = 4. In this case each realization
for one table has a corresponding equivalent realization for each of the three other
tables.

At the top of each of the Tables A-4, ..., A-11 we find six circuit realizations
Aj. By, Cyand A]. B], C], and so forth. The asterisk indicates duality. Below
the circuits in the respective circuit columns we find the impedance and the admit-
tance interpretation of the type of function under consideration. Finally, the iower
part of each table gives the formula for computing the circuit elements based on the
function parameters.

Let us now get a merely qualitative picture of what kind of circuit realizations
we get when we interpret F({s) = Z(s), and when F (g) is of the odd sub-categories
(1) or (3).

Let F (s) be of category (al) and F'(s) of category (bl). Then by the upper

right part of Table 8a we are advised to link the impedance Q_;'1 in series with the
resistance Ry. This impedance has four equivalences, the circuits B"S' » .-.» Bg
on Tables A-8, ..., A-11. Thus we obtain the circuiis Dy. ..., D4 on Table 11.
Each of these four circuits is equivalent with any other.

Let F{s) be of category (al0) or (a3) but F'(s} of category {b4). Then by the
lower right part of Table 8a we are advised to link the inverse admittance (QI-I» P3)

in series with the resistance RO . We find the admittance Q as circuit Bi’ on-
Table A-4 and the admittance P3 as circuit C3 on Table A-6 and as circuit C; on
Table A-7. These admittances must be comtined in parallei. Thus we obtain the
equivalent circuits Dg; and D, on Table 11.

Let F(s) be of category (bl) and F'(s) be of category {al). Consulting the
upper right part of Table 9a we are advised to link an impedance P 4'1 in series

with the resistance . We find four equivalent circuits with the impedance P -1
P 4
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as circuits Cg v seen C§ on Tables A-8, ..., A-11. Thus we obtain the four
equivalent circuits D7 s eees Dlo on Table 11,

Let F(s) be of category (bl) or (53), but F'(s) of category (a4). By the lower
right part of Table 9a we ~re advised to link the inverse admittance (Ql'1 + P 3"1)
in series with the resistance Ro . The admittance Ql'l is found as circuit C, on
Table A-4. The admittance P3'l has the two equivalent circuits B3 on Table A-6
and B; on Table A-7. The admittances have to be linked in parallel. Thus we ob-
tain the two equivaient circuits Dll and D12 in Table 11,

Let us now interpret T'(s) = F(s) and assume that again F(s) is of the odd sub-

categories (1) or (3). Evidently, we have to obtain the dual circuits. 1t is up to the
reader to check that the following statements are correct:

If F(s) is of category (al) and F'(s) is of category (bl) we obtain the circuits
D";’ s eees D* on Table 12 which are a1l equivalent.

If F(s) is of category (al) or (a3) and F'(s) is of category (b4), we obtain the
two equivalent circuits D: and D cn Table 12,

If F(s) is of category (bl) and F'(s) of category (al), we obtzin the four equiv-
alent circuits D3, ..., D]y on Table 12.

If F(s) is of category (bl) or (b3) but F'(s) is of category (ad), we obtain the
two equivalent circuits Dll and Dl 2 on Table 12,

Assume now that we consider the interpreted function as the predominant one
in the particular event that the function and its inverse are both of the sub-category (1).

Let Z(s) = F(s) be of category (al) and T (s) of category (bl). Then Z(s) can
be realized by the four equivalent circuits Dy, ..., D, on Table 11 as we have
found. But it can also be realized by the four equivalent circuits DTI s eees Dfo on
Table 12. Thus there is a total of eight circuits for the realization of Z (s).

Let Z(s) = F(s) be of the category (bl) and 1(s) of the category (al). Then
Z (s) can be realized by the four equivalent circuits D‘; s eeer Dz in Table 12 and
also by the four equivalent circuits D7, ..., Djg in Table 11. Thus also in this
event there is a total of eight circuits for the realization of Z (s).

‘Note 2iso that the circuits Dl s eees D4 in Table 11 and the circuits D7 s eeed
DIO in Table 12 are RC c1rcu1ts, and the circuits D, ..., Djg in Table 11 and
the circutts DI 2 seas D4 in Table 12 are RL circuits.

When Z(s) = F(s) is of category (al) or (a3), but I'(s) of category (b4), we
obtain the circuits DS and D6; when Z {s) = F(s) is of category {bl) cr (b3) and
I'(s) of category (a4), we obtain the circuits Dj; and D;,. Both pairs of circuits
are RLC structures and are found in Table 11,

When T'(s) = F(s) is of category (al) cr (a3} and Z(s) is of category (b4), we
obtain the circuits Dg and Dz ; when T'(s) = F(s) is of category (bl) or (b3) and
Z (s) is of category (a4), we obtair the circuits Di‘2 1 and Df‘z. Both pairs of equiv-

alent circuits are RLC structures and are found in Tabie 12.
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Table 11, RLC Realizations with Exclusively Positive Circuit Elements (Duals of
the Circuits in Table 12

D D2 D D¢ R,
Ro R, R, Ry G Qz 0_30 R, '58\—-[:::}‘
ﬁM\-I’\M—‘ = v
Tc, TC, R, 2R, R.% TG Tcg G cz"'—%"z
Ds
R, L
D7 DB
R,
R, L L, R, R, R, K
Rl RZ %Ll 5"2 l Ll Lz Rz
Dy De
R, R, R, Ry ol
%L, =C, L,% %R, %RZ
1

Table 12. RLC Realizations with Exclusively Positive Circuit Elements (Duals of
the Circaits in Table 11

o D3 D3
L, L, L, R
05
L, R R; C
RO ch‘ ao Rl ‘%RZ
(14 Ds [ H Do
R R - o R
N D2
¢ L & R Ry
R, SR, 3R, %Ro L

if
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Right now we are not yet in the position to give the other model circuits that
exist besides the circuits Dg, Dy and Dy, Dy, and circuits Dg, Dz and D{’i, DTZ.
These model circuits will be developed in Section 5. 4.

For convenient use in realization problems we summarize the instructions tc
obtain the circuits in Tables 11 and 1Z and in the following Tables 13a,b. Table 13a

is devised for the impedance interpretation Z (s} = F({s) and Table 13b for the ad-
mittance interpretation T'(s) = Fis). )

Table 13a. Realizations of the Impedance Interpretation Z (s) = F (s)

Circuits Dl' cess D4

Z(s) of (al) Rg =1,
T'(s} of (bl) Ry, Ry, see Tables A-8, ..., A-11
Ciy. Cy for circuits B;. cens Bg

Circuits D5 and D6

Ro =1
Z({s) of -(al) o_ (a3) C see Table A-4
I'(s) of (b4) for circuit B}
R;, RZ’ see Tables A-6 and A-7
Lj for circaits C; and CZ
Circuits D'.r, ceae Dlo
Z{s) of (bl) Ro = Demop
T'(s) of (al) Ri. R, see Tables A-8, ..., A-Ii
L. Ly for circuits <3, ..., Cg

Circuits Dy; and D,
Z(s) cf (bl) or (b3) 1, see Table A-4

T'{s) of z9) for circuit C;
i R;. RZ'} see Tables A-6 and A-7

for circuits B3 and B4

Remarks:

All circuit diagrams of the circuits Dy, ..., D3> areon Table 11,
L; in circuits Dy and Dy = L in circuits C3 and CJ,

C; incircuits Dy and Dy, = C, in circuits B3 and B,.

© o et Ll R e et

oy

}W‘» ARCRARN. S TE TR

i

Esd
ey



LV L

|

»
¢

-

b
[
?

v ‘%&W‘Gﬂy

b

i
it

diy ol

58

Table 13b. Realizations of the Admittance Interpretation I'{s) = F (s}

3

Circuits D:;. cees Dz
I'(s) of al) Ry =1,
Z(s) of (bl) Ri, Ry, see Tables A-8, ..., A-11
L;, L, for circuits Cg, ..., Cg
% Circuits Dg and DZ
e Ro = 1,
3? T'(s) of (al) or (a3) Ly see Table A-4
: Z(s) of (b4) for circuit C,
ﬁ R;, Rp,j see Tables A-6 and A-7
§ Cq ; for circuits B3 and By
Circuits D;, cens D;o
I'(s) of (bl) Rg = Ng/Dy,
Z{s) of (al) R;. R,, see Tables A-8, ..., A-11
; C;. C; for circuits B;, ..., Bg
3 Circuits D; and D;‘Z
E% Ro = N()/Do:
= T'{s} of (bl) or (b3) see Table A-4
. Z(s) of (a4) for circuit B}
- Ry, Ry, see Tables A-6 and A-7
~ Ly for circuits C3 and Cz
. Remarks:
All circuit diagrams of the circuits D;'. e Df 2 are on Table 12.
Cy in circuits D and D{ = Cj ir circuits B3 and By,
L; in circuits Dy; and Dy, = L, in circuits C3 an¢ CJ.

3.4 VMode! Circaits in RLC Ladder Structurs with One Negative Element for the Realizations of
Immittance Frodtioss ¥ {s}

We have showi: in Seciion 5. 2. 3 that when an immitiance function F(s) is of
one of the categories (22), (b2), (a4), or (b3) and consequently in the decomposi-
tion Eq. (44c) the singular function F{s) is of the same category, and if F(s) is
interpreted as an impedance Z (s} = F (s}, then the driving-point ir:pedance of
the circuit in Figure 6a is Z(s) = F(s). We also have shown that when F (s) is

N
‘ .
‘ v Ce \



of one of the categories mentioned above, and when F(s} is interpreied as an ad-
mittance I'(s) = F(s), then the driving-point admittance of the circuit in Figure 6b
is T'(s) = F(s). In he decomposition Eq. (44c), however, the singular function F (s)
is multiplied by the factor (1-N,,). But this means only that we have to multiply the
U,V,W, X, Z by ihis factor to obtain the impedance (1-Ny,) Z {sV and the admittance

(1-Np,) T(s) respectively. We now give circuits realizing this impedance and
admittance.

In deriving the function variations ¥,, ¥y, F_ and F,_, Fy,, F,, inSec-

tion 4.2. 3 we iised the normalized pr functions s, 1/s, and 1. It follows from

Tables A-2 and A-3 that these functions are of the types Py (or Pl‘l), Q, and

Ql'l . It follows from Table A-4 that

in impedance interpretation in admittance interpretation

s= inductance L =1

m

capacitance C =1

"

capacitance C =1 inductance L. =1

[ N )]
f

1
s
1= resistance R=1

resistance R =1

By Table 5 and Egs. (772, ..., €) in impedance interpretation the U, V,W are

inductances in ?a and ?ax'
capacitances in Fy and Fy.
resistances in f‘c and ?cx .
X is a capacitance in F, and F__,
an inductance in fb and F_,
a resistance in ?ax and i‘;bx’
Z is aresistance in F, and Fy,
an inductance in ﬁbx and F..,
a capacitance in fc and F_ .

Also by Table 5 and Egs. (772, ..., €) in admittance interpretation the U, VA W are

capacitances in F, and F__,

inductances in ?b and i‘.'m:’

resistances in T, and Fe.

X is an inductance in f‘a and .ﬁc.' .
a capacitance in ?b and ﬁc'

a resistance in Fyy and Fpg-

Z is aresistance in ¥, and Fg .

a capacitance in f‘bx and ?cx'

an inductance in F. 2nd F,.

These results are merely qualitative.
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When we know the coefficients of F(s), then Table 6 gives us the constants
u, v,w, x, and z. We only have 10 multiply these constants by the factor (1-Np,)
to get the branch impedances and branch zdmittances respectively; by the qualita-
tive results above it is easy to obtain the sizes of the elements. Instructions for
this are given by Table 14,

In the upper part of Table 14 we find the circuits F;, ..., Fg with the driving-
point impedance (1-Np,)F (s) and the dual circuits F;. ey Fz with the driving-
point admittance (1-Np)F(s). The lower part of the table gives the RLC elements
as the products or the inverse products of the constants u, v, w, x, z multiplied
by the facter (1-Np,)).

Al these circuits in Table 14 are model circuits since one of the circuit ele-
ments in the group of U,V,W is negative. The negative element is indicated by
an encircle¢ @, resulting from the main-category (a) of F (s) and by an encircled
®, resulting from the main-category (b) of F (s).

We have shown in Section 4. 2. 3 that besides the decomposition Eq. ($4c), the
decomposition Eq. (59) is also possible. In this decomposition the functional com-
ponent is 1/(1-Ny,) 'F'(s). Thus the immittance function (1-Np) ‘F (s) has the
opposite interpretation of F (s). The factor (1 -Nm)' is defined as the inverse of
(1-Np). When we know F(s), we also know F{(s): we have only to interchiange
Dy witk Ng and Dy with Nj. By Table 6 we obtain the u,v,w, X, z for F (s)
using the primed coefficients defined in Egs. {60b, ..., €). Then we apply
Table 14; but instead of the factor {i-Np,) we have to use the factor (1-Np)' =
1/(1-Nm). To be correct, .he impedance and admittance functions in this table
2lso have to be read as primed notatioas in this apglication. Thus for any cir-
cuit Fy, ..., Fg derived from F(s) there is also an eguivalent circuit F], ..., F
derived from F (s) and vice versa. Teis is also verified by Tables 102, k.

We are able o give the complete model circuits of immittance functions F (s}
that are of any of the categories (22), (b2), {(a4), (b4). As scon as F (s} is obtained
as summ .cized iz Table 7, it does not matter which one of these four categories is
under consideraticn.

Accerding to Tables 10a,b and Egs. {44c) and {59)

=N %+ N ) F =N % H
F(s) = Ny + X = N+ gdeg - CH))

Thus ior the
impedance interpretation Z(s) = F(s)

Z(s) = Rg + impedance (i-N)F(s), {82a)

or




Table 14. Model Realizations of the Impedance (1-N;)) F (s) and the
Admittance (1-Np) F (s)

F F, F,
i...6 L 2
@ ® ® o R, @
Ll L3 C| l C3 @ R3
C L L l
W_’
Fla g
. ®
& L Ra
c R,
C
R...6 R £
. 11 C
-~ L C |
“Cz R L2 R Rz
©=FC ®gL O] R, ®
Admittonce — 1
F(s) el
4 R
®
Tm
@Icl Cy=
Rl R|GiHB|k|f
E r:u ?b Fh ift: ch '/?g
yi-:a VF; !/E !,?h yF: vﬁc F°
' ‘/cl R,
2 ‘/Cz Rz
L, e, R, s "N Y, x(I~N,)
elR [L [R L ]l mfc |im|c A
RIVeIRIL IWelL [ WmiiimlT {iL]C

£1
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Z{s) = Rg + 1 = . 82b
() 0 7 admittance (1-Np,) 'F' (s) (820)

In Egs. (82a,b)
Ry = Np,. (82¢)

Talking in terms of circuitry
Eq. (822) means

circuits F, ..., Fg
resistance R in series with derived from (83a)
T (s) with factor (1-Np,)
Eq. (82b) means
circaits F§, ..., F§ _
resistance R, in serics with _,, derived from (83bj
F (s) with factor (1-Np,)’

The complete model circuits for (83a) are found as circuits My, ..., Mg in
Table 15. The model circuits for (83b) are the circuits M%, ..., M5 in Table 16.
All these twelve circuits are equivalent.

For the
admittance interpretation I1(s) = F (s) of Eq. (81)

I(s) = - 4+ admittance (1-N,)F(s), (84a}
RO m
or
I(s) = =~ + 1 =t (84b)
R, impedance (1-Np)'F {s)*

In Eqs. (84a,b)
Ry = I/Nm. (84c)

Talking in terms of circuitry
Eq. (84a) means

circuits F’f r o ees Fz
resistance Rg in parallel with derived from {85a)

F (s) with factor (1-N
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Table 15, Model Circuits My,

in Table 16)

63

veer Mg and M3, ..., Mf‘z (Duals of the Circuits

M Mo | M
R, L, L, R, ?‘F jf R, R, Ry
L ¢ R, |
® 2R 2 3R 2 .l.c
C L L J-
M4 M5 MS
L, C. R,
c £ L
R R TC
* *
- l_‘__ - .
R, C. R|R, L.
Tcl cs‘i' §L| qu

AR o T

4

:"T"‘ﬂ‘w £ Job BB e e,

1‘549, AT R
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Table 16, Model Cirzuits M’;‘,

in Table 15)

vees Mg and M.,

ooy M12 {Duals of the Circuits

M- Mg Mg
Ro L2 Ro "I R Ro Re
c L L j
Mo My, M,
L, L : Cs R R
Ly C, Ry
Ry R Rs R FL Ry c L
o o 1

Tx:ﬂ!kr an
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Equation (84b) means

circuits Fy, ..., Fg
resistance R in parallel with -, derived from {85b)
F'(s) with factor (1-Np)'

The complete model circuits for (85a) are found as circuits Mj, ..., Mz in
Table 15. The model circuits for (85b) are the circuits My, ..., My, in Table 16.
All these twelve circuits are eqguivalent. The asterisks verify the duality between

o anahatth

the impedance and the admitiance interpretation,

For convenience in solving realization problems we summarize instructions
for obtaining the circuits on Tables 15 and 16 in Tables 17a,b, Table 172 is deviscd
for the impedance interpretation Z (s) = F (s), and Table 17b for the admittance in-
terpretation I(s) = F(s). The function F(s) is of sub-category (2) or (4).

When the immittance function F (s} and its inverse F'(s) are both of the even
sub-categories (2) and /or (4), then we can obtain model circuits only in one or the
other interpretation. Such a function has a total of 24 model circuits., They are
all equivalent, but none of them is identical with any other. Such immittance func-
tions are possible according to Tables 3a,b.

Wher ither the immitiance function F (s) or its inverse F'(s) are of the even
sub-categos:, {(2) or (4), but the immittance function F'(s) or its inverse F(s) is of
the odd sub-categories (1) or (3}, then we obtain only 12 model circui:s (either
My, ..., Mgand M%, ..., Mj5 or M§, ..., M{ and My, ..., Mj;) and in addi-
tion to these equivaient RLC ladder structures with exclusively positive circuit
elements, Such immittance functions are also possible according to Tables 3a,b.
Thus we close a gap whichk we left open at the end of Section 5. 3. The ladder struc- .
tures can only be the circuits D5, D6, or Dy, Dlz in Table B or the circuaits B
Df::, Dz, or Dy}, DI*Z in Table 12. The reason is that the circuits Dy, ..., D4 and
Dy, ..., Dy, in Table 11 and their duals in Table 12 postulate that F(s) and F'(s)
are both of sub-category (1).

5.5 The Total of All Realization Possibilities of pr Biquadratic Immittance Fuactions in Canonical
Ladder Form

Since we are abie to adjust the immittance function F(s) either to the imped-
ance function or to the admittance function, we can decide that in the following in-
vestigation the function F(s) shall always be of the main-category {(aj. By the
interpretations Z (s) = F{s) and (s} = F(s) we cover all posribilities. This
decision, however, is in general not necessary.

Summarizing the contents of Tables 13a,b and 17a, b it is easy to establish
Table 18, This table makes it convenient to get an immediate orientation on what

kind of canonical circuitry ore has to expect from an impedance function Z {s) or
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Table 17a. Realization of the Impedance Interpretation Z (s} = F({s)

Category of F (s): (a2), (b2), (a4), or (b4)

Use the coefficients Dy, Dy, Ny, N; and the factor (1-Np,).
Apply Table 6 to get the constants u,v,w, x, 2.
Apply Table 14 with these constants and the factor (1-Np)
to get the circuits Fy, ..., Fg.
The first group are the realizing circuits Mj, ..., My in Table 15,
Resistance Ry = Ny,
all other circuit elements as obtained for circuvits Fj, ..., Fg by Table 4.

Use the coefficients ﬁb, Dy, ﬁa, ﬁ'l and the factor (1-N_))' = 1/{(1-N_).
Apply Table 6 assuming that aill D and N are primed

to get the constants u,v,w, x, z.
Apply Table 14 with these constants and the factor (l-Nm)'

to get the circuits Fi, cees FZ; K
The second group are the realizing circuits M, ..., M, in Table 16,
Resistance Ry = N, ) .
all other circuit elements as obtained for circuits Fi, ..., Fg by Table 4,

——

Table 17b. Realization of the Admittance Interpretation I'(s) = F(s)

) 66

é (1
(2)
(1)
(2)

Category of F(s): (a2), (b2), (a4), or (b4)

Use the coefficients 50' 51. ﬁO’ ﬁl and the factor (1-N_).
Apply Table 6 to get the constants u,v,w, x, z.
Apply Table 14 with these constants and the factor (1-Np,)
to get the circuits Fy, ..., Fg.
The first group are the realizing circuits M‘;, ooy MZ in Table 16,
Resistance Rj = I/Nm .
all other circuit elements as obtained for circuits F}, ..., F} by Table 14.

Use the coefficients Dy, B, Ny, N and the factor (1-Np)' = I/1-Np).
Apply Table € assuming that all D and N are primed

to get the constants u,v,w, x, z.
Apply Table 14 with these constants and the factor (1-Ng, )

to get the circuits Fy, ..., Fg.
The second group are the realizing circuits M, ..., My, in Table 15.
Resistance Ry = 1/N_ ,
all other circuit elements as obtained for circuits Fj, ..., Fg by Table 14.
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an admittance function I'(s), recognized by the aumerical values of its coefficients.
One has only to identify the categories of the function and of the inverse function by
the test values TO' Ta' and Tl for both functions and then one is able to find the

realizations qualitatively in Table 18. In this respect the table is novel and a highly

valuable source of inrformation.

Table 18, All Realization Possibilities of pr Biquadratic Functions

Impedance Admittance
F (s) F'(s) Interpretation Interpretation
Z(s) = F(s) I(s) = F(s)
Dy, «.., D p;, ..., D
@1 (b1) r 4 1 4
D7, cees D10 D,‘., cses D10

Dy, Dy Dy;. D

1 ~1z 1 12

(a24) {bl) or (b3) Ml’ cons M:S .’MI. cees Mg

% %
Mo, ..., My,

M., ..., MIZ

{(al) or (a3)

(04)

Ds, D¢

My, .- Mg

Mo, ...o My,

D, D
M, ..., M,
M3, ..., Mg

(a2) or (a4)

(b2) or (bd)

M}: ..., M
Mg ..., My,
My, ..., Mg

=%
75 --es My,

My, ..., Mg
Mo, ..., My
e %
00 MG

M, .... M

T 12

Remarks:

Note that F (s) is adjusted and not the same in Z(s) and I(s).

Find circuits Dl' coes D12 on Table 11
D], ..., D5 on Table 12
Mj. ..., Mg on Table 15

% 2
Ml' oo M6

on Tzble 16

M’i' cees Ml?, on Table 16
M;, ceos Ml‘j‘,_ on Table 15

et
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Some remarks seem to be proper as to the row in the table where F(s) is of
category (a2) or (a4) and F'(s) of category (b2} or (b4). In ihis case the circuiis
Mj, ..., M{ and M., ..., M;; result from the decomposition of F(s) and the
circuits My, ..., M, and M'f}. ceen Ml:?. resuit from a readjusted F(s) where the
D's are interchanged with the N's; by this all 24 circuits My, ..., My, and
MT, caes ME are qualitatively obtained for the realization of Z (s) and of I'(s).

As we recogunize from Table I a pr biquadratic function of any constellaticn
of categories offers quite a number of possibilities of realizations. In each inter-
pretation we get a total of 8 RC or RL ladder realizations wher the function and its
inverse are of sub-category (1); there are two RLC ladder realizations with only
positive circuit elements besides 12 model circuits when either the function or its
inverse is of an even sub-category and the inverse or the direct function is of an
even sub-category. There is a total of 24 model realizations, but no RLC realiza-
tion with positive elements when the function and its inverse are of even sub-
categories,

From the engineering point of view one may prefer one or several of the offered
equivalent realizations and disregard the others. There is such a great variety to
be judged that we do not intend to discuss eventual advantages of one circuit ot er
others. This judgment is too dependent on the particular technical situation. But we
want to point out that in particular among the circuits Dy, ..., Dy, i+ ---2 DD
and among the circuits My, ..., My, M?, ceen Ml*z there are usnaily some whose
circuit elements have acceptable dimensions and others that are not acceptable.

5.6 Niscriminating Four Types of pr Functions

. regard to their realizations Table 18 suggests the discrimination of four types
of biquadratic and pr functions. When F (s) and F'(s) are both of the odd sub-
category 1, then the realizations are ladder networks in both interpretations. We
will refer to this type of function as "Type A/A."” When F (s) and F'(s) are both
of the even sub-categories 2 and/or 4, then the realizations are model circuits in
both interpretations. We will refer to this second type of function as "Type BR/B. i
When a function is of the odd sub-category 1 or 3 and its inverse is of the even
sub-category 4, and when we realize the function, we will refer to it as "Type A/B";
if we realize the inverse function, we will refer to it as- "Type B/A." Evidently,
there is not much difference between the types A/B and B/A. Tke fraction notation
only indicates that in the one interpretation the realization is a ladder network, in
the other it is a model circuit. The type of discrimination thus is very general
and not restiricted to functions of the biquadratic rank.
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6. PLANS FOR FURTHER STUBIES

We have decompesed and realized nine different numerical examples, each cf
them dealing with one typical constellation of categories of F (s) and F'(s). We
felt that these results should be published separately. A separate publication is
justified partly in order tc avoid having the paper become too ambiguous, partly
because we have also elaborated computation programs by which the realization
of any pr biquadratic function can be periormed rapidly and in a schematic way
that necessitates only the use of a desk calculaticg machine. It is anticipated that
this work will be published shortly after the appearance of the present paper.

Somewhat later we intend to publish a paper that deals with the further trans-
formations of the model circuits into non-canonical RLC circuits without trans-

formers but with positive elements.
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Appendix A

The tables in Appendix A are reprints from

Haase, Kurt H. (1963) Passive and Transformerless I.C, RC, and RL One-Ports,
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Table Al. Reactance Functions S; and $;7! (i= 1,2, 3,4)
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Table A2. Immittarce Functions Pyand @71 (i=1,2,3,4)
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Table A4, Realizations i =1
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Table A5,

Realizations i = 2
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IMPEDANCE
FUNCTION

ADMITTANCE
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Table A6, Realizations i= 3

A3 Bs Cs
L 1L, R LR, L g
C2 )
A 8% [
Icn z]_cz m]:cs Icz Rz

Ay | By | €3} Ay | By | €5 CIRCUIT

Ss | Ps | Qs | s3'| @3 | P3'| IMPEDANCE
FUNCTION

Ss | Qs | P5 | ADMITTANCE
FUNCTION
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Table A7,

Realizations i = 3

A4 By Ca
e 3, R $Re Lz
Aa 8'3 d
—f o
C C, C Ca R g
L, : '
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S P Q s?l Q| e IMPEDANCE
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Table A8, Realizations i = 4

CIRCUIT

IMPEDANCE
FUNCTION

ADMITTANCE
FUNCTION
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Table A9. Realizations i = 4

A. Bg CQ
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Table AlG. Realizations i= 4
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Table 411,

Realizations i = 4
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